We had the inaugural
The aim of the group is to try and get a group of people together who are interested in creating next generation
We are looking at holding the next meeting at
We had the inaugural
The aim of the group is to try and get a group of people together who are interested in creating next generation
We are looking at holding the next meeting at
A while a go I put the forward the idea about setting up a
We are going to hold an inaugural meeting at
Dan Creswell has agreed to give the first talk on some of the work he has been doing on Amazons
The idea is that it should be a very informal group of like minded individuals. Beer and Pizza included!
I have just posted a question on the
At the moment I don’t have any clear ideas on how this should be structured, set up, etc other than I reckon “that would be a pretty cool bunch of people to get together…”.
If anyone is interested reply on the mailing list or drop me a mail and lets see what we can set up !
Update: the initial response seems positive – which is good! Had several off list responses so keep them rolling in! Dan has put an initial post on his blog – so good work there!
Well, I have **just** got access to the
Will add some more entries when I have had time to play with it further.
sorted map” that provides other Google components with a scalable and reliable persistent data storage layer. This is one of several infrastructure components that Google apps are built from including:
The thought that is going through my head is whether Google might open up this system and allow the public to use it. Clearly you could use Big Table as a file storage medium. This could then become a direct competitor to
Via Greg (as usual)
Now this is starting to get interesting! (via Greg)
Amazon have announced
“You have complete control of your instances. You have root access to each one, and you can interact with them as you would any machine. Each instance predictably provides the equivalent of a system with a 1.7Ghz Xeon CPU, 1.75GB of RAM, 160GB of local disk, and 250Mb/s of network bandwidth.“
Your “app” consists of a set of one or more “
As with any “grid” style compute service the idea is that you only pay for what you use. The pricing model seems pretty similar to S3s:
I have only skimmed the site very quickly but this is definitely somehting that needs to be played with!
Some documentation is here.
Steve Jones has used the World Cup to come up with an interesting analogy as to why football is the perfect example of a
One of the key characteristics of an
Once you have actually decided what the underlying issue is then you can start to look at how you might solve that problem. You will generally have a set of actors (services? components?) that are available to help you to do some work. The classic (IT) approach is to define a process that is responsible for orchestrating some of those actors to achieve that end goal. The process instance is responsible for invoking and managing the interactions of all these actors. Irrespective of whether you are directly invoking the underlying actor (through some kind of RPC – web services?) or using a more abstract messaging approach (and thus invoking by proxy) there is a very high degree of coupling in this system. The use of an asynchronous messaging layer might help to alleviate some of the ill effects of temporal coupling, but the coupling remains through the fact that the orchestrating process needs to have a great deal of knowledge about the semantics and capabilities of the actors it is invoking. Change is difficult in this command and control approach because of the implicit interaction knowledge that is embedded within the process.
What happens if you invert that thinking and rather than assuming that the actors in your architecture are dumb, stupid and have to be told what to do; let them become fully fledged participants in the solution? Allow them to go looking for work and to carry out the tasks they know how to move forward. This “inverted” Agent based approach results in a much richer, more flexible and powerful architecture. There is no requirement for a process to explicitly orchestrate the interactions between services. The knowledge of what a service does and how and when it should be invoked is removed from the system. It is highly collaborative and it is unlikely that any single actor knows how to achieve the goals of the system – indeed it is actually undesirable to have that much knowledge in a single place. By making actors more specialised they are easier to write and test. The actors can be added and removed at will. As new problems arise – new actors with new specialisations can be added to the system without impacting anything that has gone on before. If existing actors can help on this new problem then they will do so – which leads to a great deal of actor (read service) reuse. Scaling and operational management might also become much easier – actors will not choose more work than they can comfortably manage. If you have outstanding work at the end of the day – simply add more workers to the system. Compare this to the “classic” approach where the runtime system must be aware of how much work an individual actor is carrying out and must know what to do if that actor starts to become overloaded. Does it matter where an agent actor actually runs? Probably not.
So how do you go about building a system like this?
A good place to start looking at how to build a system like this is to actually look at the place where SOA is supposed to be the “next” (yawn) Silver Bullet – inside a business. Very few businesses actually run using the classic “command and control” approach (indeed the best example of that mind set is Soviet Russia – what a great role model!). Business are far more likely to run using a collaborative approach. Problems are generally solved by one or more teams taking a problem (say pitching for an order) and dealing with those aspects they are able to manage. The sales guy might take the request for business and log the details of the order, the credit guy will check that the customer is good for the deal, the shipping guy might search for the best delivery quote, the warehouse guy will check it is in stock and the finance people will try to finance the deal. If there is a problem, say there is a credit issue, then another actor (say a senior manager) can be drawn into the discussion and make an executive decision based on how importsnt the client is. Once everyone is happy then the sales guy can take the final solution and pitch for the business. Nowhere in this description have I described HOW the actors are invoked – all I have described is what they do. No actor has to know about any other actors – yet they are still able to solve the problem. This means that it is the “problem” itself that is flowing through the system and the actors that can deal with it somehow “see” it.
Modern companies might use an Order Management System but the classic computer science approach is to use a
In a JavaSpace approach the “problem”can be modelled using fully fledged objects that flow through the system. Actors are able to write instances of those objects into the system, read them or remove them completely. They are able to modify instances of the object and return it to the space or even create new objects/problems that other actors can then help to solve. The space ensures that access to objects are concurrently safe – only one actor can remove an object (although many can read it simultanously) – and the use of transactions means that objects are not lost if an actor dies whilst working on its part of the problem. Actors monitor the space for objects that match their specified criteria – maybe it is of a certain class, or a field (or set of fields) are set to a certain value. Once they see an object that matches their criteria they can operate it. In the course of operating on the object they may well set its state such that another actor becomes interested in it and is now able to do some work – thus moving the problem on a little further. Eventually the problem will be solved and the goal scored – unlike the England team.
(Aside: many of these object flows through the space start to look like events – see Gregor Hohpe Programming with a Call Stack –
Last year they hired
I think it is really cool when you can work on such large problems. Clearly there are only a few organisations that are facing these issues at the moment – Google and Amazon spring to mind – and I find it interesting that Geoff would move from Sun to Amazon. I think dealing with scale is going to become increasingly important for all businesses over time – and not just those web super giants that have to deal with it at the moment. It is going to require a total change in perspective to deal with it.
The other interesting thing is how scale – once you are faced with super massive scale – can become a friend rather than a foe. Its a bit like applying some kind of martial arts move (scale ju-jitsu?) to the massive problem and allowing its own inertia to let you handle things. At very large size I can see how applying some fundamentally different thought processes – ie looking biology and taking a probablistic rather than command and control approach – scale suddenly becomes alot less scary (although that is not to say it becomes easier!)
Interesting times – interesting problems!
Interesting to note
The site is fairly basic at the moment but has some job listings (hint: knowing this might help getting a job there….)
Shame there is no RSS feed …….
A Google talk on “Building Large Systems at Google” by Narayanan “Shiva” Shivakumar (via Greg Linden).
He talks about some of the larger software systems:
I have mentioned Big Table before with a talk that Jeff Dean gave at the University Of Washington.
Nothing about