All posts by ewan

Jini sub projects on java.net

As part of the (proposed) migration of Jini to the Apache Foundation, many members of the Jini community have been focussing on getting the infrastructure in place to manage the many sub projects that spring up around the main Jini core.

Gregg Wonderly has taken responsibility for setting up a Jini project site at jini.dev.java.net. The idea is to provide a “home” for anyone with a Jini related project (outisde of the main Jini development which will be taking place on Apache.org). Gregg has just announced that the site is set up and is ready for business!

Several of the sub projects from jini.org have already been moved over to the new site. Things are looking good!

May 29, 2006

Some stuff for the Bank Holiday weekend.

Also got to do some reading on Pi Calculus:

Biology, crowds and VERY large scale systems

One of the things I want to spend some time thinking about in this new blog is how we might build massive scale (as oppposed to merely large scale) distributed systems and what we can learn about building these applications from other areas of knowledge such as biological, organic and social systems.

Last year Werner Vogels gave a talk (related pdf) about how you might build VERY large systems (million+ nodes) and why these systems just will not scale with our current deterministic way of building systems.

Systems of this size are highly fluid in nature. Individual nodes within the system will come and go almost constantly as hardware, software or user failure/action/error causes localised problems. Even with highly reliable hardware and a mean time between failure of components measured in hundreds of thousands (or even millions) of hours – with millions of nodes in a system the law of averages means that you will get failures hourly. Add in coding errors, support screw ups and end user errors and it very quickly ends up looking like a digital massacre. Somehow the application that is sitting on top of this quantum flux of failure must be able to deal with all the chaos and provide a stable and coherent user experience.

With all this failure it begs the question: “Is it even possible to build systems of this size and complexity?

Trying to deal with this flux in a deterministic, synchronous or Turing style organised system manner is clearly a non starter. The management overhead will be horrendous. The overall system will be highly brittle and subject to the most extreme strain.

If we are unable to muscle the system into the desired shape we need to think about different approaches. The application needs to deal with the flux as a fact of life and embrace it. As Bloglines found out this afternoon even systems that are of the scale most of us build could take some of this thinking on board.

As Werner points out in his talk there are many highly complex biological and organic systems that are capable of scaling to massive degrees with virtually no centralised control mechanism in place. These systems are probabilistic and self organising in nature.

The classic example is the ant colony or bee hive where each individual ant or drone goes about its own business and yet adds to the collective good. Cells within the human body are capable of acting in a highly consistent and coherent manner, displaying highly complex behaviour (you try programming a system to fight viruses or even breathe!) despite minimal directed management. Even humans are capable of forming complex, self organising systems with minimal direct interaction – think of markets and other forms of large scale crowd behaviour.

How do these systems come about? How do they manage to create such stable environments? How do they fail and what are their weak points?